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ABSTRACT 

We investigate the issue of initial conditions for natural inflation. Unlike many inflationary models, the 

psadwNambu-Goldstone boson nature of the inflaton tield provides 4 natural measure for the phase space 

of initial conditions. We study the e5ccts of the inflaton kinetic term numerically and show that it shifts 

the range of i&d field vdun which lead to successful inflation without altering the sire of that range. The 

fraction of phase space in the ruccessful range is deterr+d by the spontaneous symmetry breaking scale, /, 

and is O.?, 0.2, hnd j3 x lo-’ for f = SM ~8, Mpl, and Mp(/2 respectively. Naturd inflation becoma similar 

to chaotic inflation for values off > i%fPI and for fls M pi, it is more akin to new inllation. The roles of 

spatial curvature and spatial gradients are briefly discussed. 
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The inflationary scenario(l] remains the most elegant solution to the horizon, flat&and mohopole 

problems. During inflation, the Universe is dominated by vacuum energy density, p rz pfic rz con&., and 

the cosmic scale factor grows quasi-exponentially with time, R(t) o[ e”‘; where H = Ii/R z [BrCp43]‘/’ 

is the Hubble parameter. If R(f) increases by core than 60 e-foldings during inflation, a small causally 

connected region grows sufficiently to explain the homogeneity, isotropy, and flatness of the Universe and to 

dilute any overdensity ofmagnetic monopoles and other relics. Inflation also provides a predictive scenario for 

the origin of density perturbations: quantum fluctuations durinng inflation get stretched beyond the Hubble 

radius, causally generating density fluctuations on the very large scales required for galaxy formation.[2] 

Inflation makes two testable predictions: that flr.,-z w = 1 (more precisely, that our observable 

universe is spatially flat) and that the spectrum of large-scale density fluctuations is approximately scale- 

invariant, P(k) o[ k. Two notable recent observations consistent with these predictions are the results 

of the IRAS survey[3] indicating We/b z 1.28?:;:: ( w h ere b is the biasing of galaxies relative to mass, 

b 2 lis expected) which points in the direction of e. flat Universe, and the angular correlation function of 

the microwave background anisotropy as measured by COBE[4] which agrees well with the scale-invariant 

spectrum of density fluctuations (P(k) cc k”, n z 1 zk 0.5). 

The limultaneous requirements of sufficient inflation and cosmic microwave background radiation (CM- 

BR) anisotropy limits constrain the self-coupling of the inflaton field to be extremely neak.[S] Natural 

inflation[6], in which the inflaton is a pseudo-Nambu-Goldstone boson with a potential of the form V(#) = 

A’(1 + cos(+/ j)), was proposed as e model in which the inflaton can have a small coupling which is natural 

from the particle physici standpoint. In this model, the requisite weak self-coupling arises in a theory with 

spontaneour symmetry breaking at a scale j and explicit symmetry breaking at a lower energy K&Z -A: the 

scalu self-coupling X 5 (A/j)‘. Succeuful inflation occu*s for j e MP, and A - Afour, mass scale, that 

arise in particle physics models with a gauge group that becomn strongly interacting at the GUT rcale.[g,7] 

An added bonus of natural intlation is the possible departure from scale-invariance of the power spectrum 

for density perturbations. Adams et a1.[7] studied the implications of power-law epectra inspired by natural 

inflation, P(k) uz k”, n z 1- (M~,/gxj’), in th e cold dark matter scenario of galaxy formation together with 

recent data from microwave background anisotropies and large-rcak structure observations. 1n particular 

they showed that natural inflation can help account for much of the excess power at large scales while fitting 

the recent COBE data if j 2 0.4&r. 

In Adams et al., ra in most treatments of inflation, the evolution of the inflaton was started tram a 

spatidy homogeneous initial state with sero kinetic energy, b(z,t) = #(t),&ti) = 0. In this rep&t, wye 

address the problem of initial conditions for natural inflation. We consider in detail the effects of a n&n-sero 

initial scalar field time derivative, d, and discuss the elf&s of non-sew scalar field gradients (dd) and spatial 

curvature (k = fl). 

One of the alleged virtues of inflation is its inscns;tivity to special initial conditions (after all, TVhis is 

precisely what inflation is meant to provide far the Universe), but it is often difficult to avoid imposing 

special initid conditions for the inflaton field when impkmenting a specific model of inflation. It would be 

preferable that inflation be a generic phenomenon1 A model with a very ‘sme,ll” initial condition space for 

the onset of successful inflation L fess attractive than one wjth a “large” initial condition space. Of cour6e; 

we need a mew116 on the phase space of initial conditions before we can compare different regions of phase 
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apace. We will see that, unlike some other models of inflation, there ia a well-defined measure for the d Y 4 

phw space in natural inflation. 

For definiteness and simplicity, we consider a complex scalar field, 0, with a global U(1) symmetry 

to describe the natural inflation scenario. The symmetry is spontaneously broken at a tempersture T i j 

through the vaamm expectation value of the field, (9) = jei*ll. At temperatures below the scale j, the only 

relevant degree of freedom is the massless field 4, the angular Nambu-Goldstone mode around the bottom 

of the 0 potential. When the temperature subsequently reaches T - A, instanton or other effects explicitly 

break the angular symmetry, giving rise to the potential V(4) = A’(1 + COS(~/~)). If4 is sero at this time 

tl = t(T z A), idflation occus in those regions of the Universe with values of sJl = 4(t1) that are sufficiently 

displaced from the minimum of the potential, & 5 +yr, where[‘l] 

sin(q5yr/2 j) 2 [l + $]-l”czp(-~), (1) 

(assuming 0 ( &/j < r). That is, if 01 < 4 yap then the scale factor expands by at least 60 c-folds before , 

Q reacha the end of its slow-rolling phase and the Universe exits from inflation. 

To sthdy the effect of an initial 4 on inflation, we numerically solve the homogeneous Einstein cquati&s 

minimally coupled to the scalar field: 

and the equation of motion: 

lj + sad + V’(6) = 0. (3) 

.-here l dot denotes a derivative with respect to time, a prime denotes the derivative with respect to 6, 

and k = -1, 0, 1 for open, flat, or closed nnivena. We define II E 4 and rewrite eq. (3) as two first order 

diflerentirl equations: 4 = If, and Ii = -3HII - V’(4), w c we solve by using fourth order RungrKutta hi h 

with a variable stepsise. 

There UC m& requirements for successful indation[g]. The only one that depends on the initial field 

configuration L that the number of e-folds of growth in the scale factor during inflation, N., must be greater 

than about 60. We u&e the numeric&lly integrated trajectoria to calculate N.: 

K=~,,fM=/,;fdd, (4) 

where 01 in the v&e.~of the field at the end of inflation (which is reached when k = 0). 

In figure 1, ‘CT ihow the boundary between “successful’ and “unsuccessful” initial conditions (i.e., 

N. = 60) in the phase-space of initial conditions for j = 3M p,, Mp, and I&,/2. The results for j =: Mp, 

arc also shown in figure 2 over a much larger range of II. Due to the symmetry of the potential, we or~ly 

need to plot one quadrant of the phsJe-space plane. As j drop significantly below MCI, the sire of the 

phase-gpace region !e$ing to inflation becomea exponentially small and, & j incrwa beyond Mpl, fhe size 

continues to increase. 
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To interpret these results, we must define a meesure on the phase *pace. With no clesrly defined 

measure, the aisc of any region of phase space depends on, for example, whether we use logarithmic or 

linear area. For in5ationary periods starting at the Plsnck epoch, e.g., Linde has used uncertainty principle 

arguments to try to get a rough estimate of the measure.[9] Since in a typical “universe creation time”, the 

energy den&y can only be defined to within O(M;,), every Md configuration with a given density up to 

M$, is given equal weight. For models in which inflation starts substantially later than the Planck time, 

it is usually even less clear what the measure should be. The evolution of the “Planck-time measure” to a 

later time is highly non-trivial and is sensitive to physics at energies well above the scale of inflation. 

Even though natural inflation starts well after the Plan& epoch (II - Mpl/h’ >> tpl), it is easy to 

see what the measure for natural inflation should be. Due to the angular symmetry that exists until the 

onset of inflation each value of 4, should be given equal weight. (The idea is that 4 ia laid down randomly 

for example by the Kibble mechanism on scales larger than the Hubble radius at some time 1 < II.) At first 

it might not be clear how to weight different vdua of II, but ae find that the measure in the II direction 

is irrelevant since for each value of II, the range of successfti..$ values har the same size. Thus, using the 

appropriate measure we see that the fraction of phase space that leeda to sufficient inflation is 0.7, 0.2 and 

3 x 10-l for j = S&I. M,t and &I/Z rupectively.[lO] 

Goldtith and Piran[lll found that for both chaotic and new inflation, the effect of the kinetic term is 

to shift the rage of 41 that leada to sufficient inflation by an amount 

A4=dG “ZT 
Mp((1 ( IL ) + I), for II: > 2v 

A6 = (24~;~,,1 Mm, for 11: < 2V. 

These radts should also apply to natural inflation since the only assumption about the potential that went 

zfnto the approximations is that it be relatively Bat. Indeed, equations 5 agree well with our numerical 

sobions. If the linen &“@I) = #‘r((n, = 0) + A.$ were plotted on figure 1, they would be nearly 

indistinguishable from the numerical boundaries. This boundary line is plotted in figure 2 where it can be 

seen that the deviation is *light urd qualitatively insignificant. 

Goldwirth aud Piran also show that the rise of the phase space leading to successful inflation is ‘large’ 

for chaotic in5ation and ‘small’ for new iuiiatiou. Their results are r&ted to the dependence of our results 

on j. For j 2 &I, natural inflation is similar to chaotic inflation: during the find 60 e-f&in@ of inflation 

the patentid is well-approximated by V(d) = m’$/2, where 4 = 4 - rj and m’ = Al/f’. For j 2 hfpf, 

natural inflation is similar to new inflation: the inflation occurs ncdr the maximum at .$ = 0, where the 

potential is similar to V(4) = X(Q - u,)’ with o’ = 6j’ and X = 1/24(A/j)‘. Thus the dependence of 

our results on j can be understood in terms of our understanding of.lchaotic’ and ‘new’ inflation, with the 

advantage that the angular symmetry of the field constrains the pa&meter space and gives it a natural 

memure. 

With the inclusion of a spatid curvature term in the analysis, our conclusions cannot be as precise. 

We expect a typical value at the Planck time for the curvature term in the expression for II2 to be of the 

order of Mi,. Thus we cau imaginea universe at the Planck time the.4 is a patching together of hiedmann- 

Robertson-Wdkcr spacetimes, each&with some value of k/R’ between -Mi, and Mi,.[lZ]. Unless there is 
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an inflationary stage between the Planck time and the onset of natural inflation, some of the closed regions 

of the Universe will collapse before inflating. These regions of the Universe will appear aa black holes from 

the open spacrtimes which will continue to expand. The curvature contribution to H’ redshifts as R-l and 

hence has a typical value of A’ when the epoch of natural inflation is reached. Since vacuum energy does not 

redshift, this will only slightly delay the onset of inflation [13]. The phase space results for an open universe 

will not be significantly different from those for II Rat universe. 

Many authors have considered the influence of scalar field gradients on the onset of inflation [11,14]. 

Here we mention two aspects of the problem that are peculiar to natural inflation. The first is again the 

angular symmetry of theory which keeps the dynamics insensitive to different values of 4 (and& we’ve shown 

II) up to the the explicit symmetry breaking scde A. When the universe cools to temperatures T -. A, the 

energy density in gradients can be m high M ~,,.r w jtH’ on the scale of the Aubble radius. For j w Mpl, 

P,..* - A’ - V(4). Since p#..d redshifts while V(4) -, cons;, the main effect would be a slight delay of the 

onset of inflation. 

Finally, another interesting feature of natural inflation is the likelihood of an earlier i@lationary period 

when the complex scalar field * relaxed to its vaccum expectation vdue. This earlier inflation does not leave 

any observable traces if the following inflation in the 6 direction occurs for more than 60 e-folds and thus 

does not require a small self-coupling. The advantage it brings is that eveu if it only lasted for a few &folds 

it would help-the onset of naturd inflation by smoothing out inhomogeneities. This earlier inflation and its 

likelihood arc discussed more thoroughly in Ref. 7. 
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Figure Captions 

Figure 1: The three pairs of lines plotted arc the numerically calculated boundaries, for three different values 

off, between regions of the initial condition phase space that lead to sufficient inflation and regions that lead 

to insufficient inflation. 

Figure 2: The boundaries for the case f z Mp, are plotted over a much larger range of lI, much larger than 

we expect to occur at the onset of inflation. The solid line is from the numerical solution and the dotted 

line is from equations 5a and 5b. Here we take In(M$,/Az) = 14.3. 
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